
Week 10

10.1 Ideals

Definition. An ideal I in a commutative ring R is a subset of R which satisfies

the following properties:

1. 0 ∈ I;

2. If a, b ∈ I , then a+ b ∈ I .

3. For all a ∈ I , we have ar ∈ I for all r ∈ R.

If an ideal I is a proper subset of R, we say it is a proper ideal.

Remark. Note that if an ideal I contains 1, then r = 1 ·r ∈ I for all r ∈ R, which

implies that I = R.

Example 10.1.1. For any commutative ring R, the set {0} is an ideal, since 0+0 =
0, and 0 · r = 0 for all r ∈ R.

R itself is also an ideal.

An ideal I ( R is called proper and an ideal {0} ( I ⊂ R is called nontriv-

ial.

Example 10.1.2. For all m ∈ Z, the set I = mZ := {mn : n ∈ Z} is an ideal:

1. 0 = m · 0 ∈ I;

2. mn1 +mn2 = m(n1 + n2) ∈ I .

3. Given mn ∈ I , for all l ∈ Z, we have mn · l = m · nl ∈ I .

Example 10.1.3. Generalizing the above example, consider a commutative ring

R. Let a ∈ R. Then

(a) := {ra : r ∈ R}

is an ideal, called the principal ideal generated by a.
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Proof. 1. 0 = 0a ∈ (a);

2. Given r1a, r2a ∈ (a), we have r1a+ r2a = (r1 + r2)a ∈ (a).

3. For all ra ∈ (a) and a ∈ R, we have s(ra) = (sr)a ∈ (a).

More generally, given any nonempty subset A ⊂ R, the set of finite linear

combinations of elements in A:

(A) := {r1a1 + r2a2 + · · ·+ rkak : k ∈ Z>0, ri ∈ R, ai ∈ A}

is an ideal in R, called the ideal generated by A.

Proposition 10.1.4. If φ : R→ R′ is a ring homomorphism, then kerφ is an ideal

of R.

Proof. 1. Since φ is a homomorphism, we have φ(0) = 0. Hence, 0 ∈ kerφ.

2. If a, b ∈ kerφ, then φ(a + b) = φ(a) + φ(b) = 0 + 0 = 0. Hence,

a+ b ∈ kerφ.

3. Given any a ∈ kerφ, for all r ∈ R we have φ(ar) = φ(a)φ(r) = 0 · φ(r) =
0. Hence, ar ∈ kerφ for all r ∈ R.

Example 10.1.5. Recall the homomorphism φ : Z → Zm defined by φ(n) = n.

The kernel of φ is:

kerφ = mZ = (m).

Proposition 10.1.6. A nonzero commutative ring R is a field if and only if its only

ideals are {0} and R.

Proof. Suppose a nonzero commutative ring R is a field. If an ideal I of R is

nonzero, it contains at least one nonzero element a of R. Since R is a field, a
has a multiplicative inverse a−1 is R. Since I is a ideal, and a ∈ I , we have

1 = a−1a ∈ I . So, I is an ideal which contains 1, hence it must be the whole field

R.

Conversely, let R be a nonzero commutative ring whose only ideals are {0}
and R. Given any nonzero element a ∈ R, the principal ideal (a) generated by

a is nonzero because it contains a 6= 0. Hence, by hypothesis the ideal (a) is

necessarily the whole ring R. In particular, the element 1 lies in (a), which means

that there is an r ∈ R such that ar = 1. This shows that any nonzero element of

R is a unit. Hence, R is a field.
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Proposition 10.1.7. Let F be a field, and R a nonzero ring. Any ring homomor-

phism φ : F → R is necessarily one-to-one.

Proof. Since R is not a zero ring, it contains 1 6= 0. So, φ(1) = 1 6= 0, which

implies that kerφ is a proper ideal of F . Since F is a field, we must have kerφ =
{0}. It now follows from a previous claim that φ is one-to-one.

10.2 Quotient Rings

Let R be a commutative ring. Let I be an ideal of R. Then in particular I is an

additive subgroup of (R,+). Let R/I denote the set of all cosets of I in (R,+),
namely, the set of elements of the form

r = r + I = {r + a : a ∈ I}, r ∈ R.

Terminology: We sometimes call r the residue of r in R/I .

Note that r̄ = 0̄ if and only if r ∈ I; more generally, r̄ = r̄′ if and only if

r − r′ ∈ I .

Remark. Recall that R/I is nothing but the set of equivalence classes of the

following relation on R:

a ∼ b, if b− a ∈ I.

Notation/Terminology: If a ∼ b, we say that a is congruent modulo I to b, and

write:

a ≡ b mod I.

It is tempting to define addition and multiplication on R/I using those opera-

tions on R:

r + r′ = r + r′,

r · r′ = rr′,

for any r, r′ ∈ R/I .

Observe that: for all r, r′ ∈ R, and a, a′ ∈ I , we have

(r + a) + (r′ + a′) = (r + r′) + (a+ a′) ∈ (r + r′) + I = r + r′,

which implies (r + a) + (r′ + a′) = r + r′. So addition + is indeed well-defined

on R/I . Note that this only used the fact that I is an additive subgroup of (R,+).
On the other hand, we have the following

Theorem 10.2.1. Given any additive subgroup I < (R,+). The multiplication

r · r′ = rr′

is well-defined on R/I if and only if I is an ideal in R.
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Proof. Suppose that I is an ideal. Then for any r, r′ ∈ R, and a, a′ ∈ I , we have

(r + a) · (r′ + a′) = rr′ + ra′ + r′a+ aa′ ∈ rr′ + I = rr′.

Hence the multiplication is well-defined.

Conversely, suppose the multiplication is well-defined, meaning that for any

r, r′ ∈ R and a, a′ ∈ I , we have (r + a′)(r′ + a) = rr′. In particular, we have

ra = (r + 0)(0 + a) = r0 = I which implies ra ∈ I for any r ∈ R and a ∈ I .

So I is an ideal.

Proposition 10.2.2. The set R/I , equipped with the addition + and multiplication

· defined above, is a commutative ring.

Proof. We note here only that the additive identity element of R/I is 0 = 0 + I ,

the multiplicative identity element of R/I is 1 = 1 + I , and that −r = −r for all

r ∈ R.

We leave the rest of the proof (additive and multiplicative associativity, com-

mutativity, distributive laws) as an Exercise.

Proposition 10.2.3. The map π : R→ R/I , defined by

π(r) = r, ∀r ∈ R.

is a surjective ring homomorphism with kernel ker π = I .

Proof. Exercise.

Theorem 10.2.4 (First Isomorphism Theorem). Let φ : R −→ R′ be a ring

homomorphism. Then:

R/ kerφ ∼= imφ,

(i.e. R/ kerφ is isomorphic to imφ.)

Proof. We define a map φ : R/ kerφ −→ imφ as follows:

φ(r) = φ(r), ∀ r ∈ R,

where r is the residue of r in R/ kerφ.

We first need to check that φ is well-defined. Suppose r = r′, then r′ − r ∈
kerφ. We have:

φ(r′)− φ(r) = φ(r′)− φ(r) = φ(r′ − r) = 0.

Hence, φ(r′) = φ(r). So, φ(r) is defined regardless of the choice of representative

for the equivalence class r.

Next, we show that φ is a homomorphism:
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• φ(1) = φ(1) = 1;

• φ(a+ b) = φ(a+ b) = φ(a+ b) = φ(a) + φ(b) = φ(a) + φ(b);

• φ(a · b) = φ(ab) = φ(ab) = φ(a)φ(b) = φ(a)φ(b).

Finally, we show that φ is a bijection, i.e. one-to-one and onto.

For any r′ ∈ imφ, there exists r ∈ R such that φ(r) = r′. Since φ(r) =
φ(r) = r′, φ is onto.

Let r be an element in R such that φ(r) = φ(r) = 0. We have r ∈ kerφ,

which implies that r = 0 in R/ kerφ. Hence, kerφ = {0}, and it follows that φ is

one-to-one.

Corollary 10.2.5. If a ring homomorphism φ : R −→ R′ is surjective, then:

R′ ∼= R/ kerφ

Example 10.2.6. Let m be a natural number. The remainder or mod m map

φ : Z −→ Zm defined by:

φ(n) = n, ∀n ∈ Z,

where n is the remainder of the division of n by m, is a surjective homomorphism

such that kerφ = (m) = mZ. So, it follows from the First Isomorphism Theorem

that:

Zm
∼= Z/mZ.

Example 10.2.7. The ring Z[i]/(1 + 3i) is isomorphic to Z/10Z.

Proof. Define a map φ : Z −→ Z[i]/(1 + 3i) as follows:

φ(n) = n, ∀n ∈ Z,

where n is the equivalence class of n ∈ Z[i] modulo (1 + 3i).
It is clear that φ is a homomorphism (Exercise).

Observe that in Z[i], we have:

1 + 3i ≡ 0 mod (1 + 3i),

which implies that:

i ≡ 3 mod (1 + 3i).

Hence, for all a, b ∈ Z,

a+ bi = a+ 3b = φ(a+ 3b)
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in Z[i]/(1 + 3i). Hence, φ is surjective.

Suppose n is an element of Z such that φ(n) = n = 0. Then, by the definition

of the quotient ring we have:

n ∈ (1 + 3i).

This means that there exist a, b ∈ Z such that:

n = (a+ bi)(1 + 3i) = (a− 3b) + (3a+ b)i,

which implies that 3a+ b = 0, or equivalently, b = −3a. Hence:

n = a− 3b = a− 3(−3a) = 10a,

which implies that kerφ ⊆ 10Z. Conversely, for all m ∈ Z, we have:

φ(10m) = 10m = (1 + 3i)(1− 3i)m = 0

in Z[i]/(1 + 3i). This shows that 10Z ⊆ kerφ. Hence, kerφ = 10Z.

It now follows from the First Isomorphism Theorem that:

Z/10Z ∼= Z[i]/(1 + 3i).

Example 10.2.8. The rings R[x]/(x2 + 1) and C are isomorphic.

Proof. Define a map φ : R[x] −→ C as follows:

φ(
n∑

k=0

akx
k) =

n∑

k=0

aki
k.

Exercise: φ is a homomorphism.

For all a+ bi (a, b ∈ R) in C, we have:

φ(a+ bx) = a+ bi.

Hence, φ is surjective.

It remains to compute kerφ = {f(x) =
∑

n

k=0
akx

k : f(i) = 0}. Note that

f(x) is a real polynomial, so f(i) = 0 also implies that f(−i) = 0. Hence

both ±i are roots of f(x) if it lies in kerφ. Factor Theorem then tells us that

(x2 + 1) = (x − i)(x + i) | f(x). So kerφ ⊂ (x2 + 1). On the other hand, i is a

root of x2 + 1, so we have (x2 + 1) ⊂ kerφ. We conclude that kerφ = (x2 + 1).
It now follows from the First Isomorphism Theorem that R[x]/(x2 + 1) ∼= C.
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